Rozety: wpisana w wielokąt i opisana na wielokącie
Data ostatniej modyfikacji: 2016-03-22
Autor:
Krzysztof Omiljanowski
pracownik IM UWr
Poziom edukacyjny:
gimnazjum
szkoła średnia z maturą
szkoła profilowana zawodowa
Dział matematyki:
geometria syntetyczna
W artykule prezentujemy kilkanaście zadań o rozetach, przy czym termin 'rozeta' jest wzięty z języka potocznego. Tylko w nielicznych zadaniach konieczne jest użycie trygonometrii (co wyraźnie zaznaczamy). Jeśli początkowe zadania okażą się za nudne lub za łatwe, to wystarczy zrobić tylko pięć z nich: O.n.o, O.n.p, O.n.p', W.o, W.3.p'.
We wskazówkach ukryte są rysunki do zadań, ale warto spróbować zrobić je najpierw samodzielnie.
Rozeta opisana na wielokącie
Gdy na wielokącie można opisać koło, to można też opisać na nim rozetę utworzoną następująco:
- wyznaczamy środek O koła opisanego na wielokącie
- wyznaczamy promienie tego koła łączące O z wierzchołkami
- tworzymy koła o średnicach będących tymi promieniami
- opisana rozeta jest sumą utworzonych kół.
Zadanie O.4.a. Wyznacz obwód i pole rozety opisanej na kwadracie o boku 4.
Wsk.
Wygląda to tak:
Zadanie O.6. Wyznacz obwód i pole rozety opisanej na sześciokącie foremnym o boku 4.
Wsk.
Wygląda to tak:
Zadanie O.3.a. Wyznacz obwód i pole rozety opisanej na trójkącie równobocznym o boku 4.
Wsk.
Wygląda to tak:
Zadanie O.4.b. Wyznacz obwód i pole rozety opisanej na prostokącie o wymiarach a×b.
Wsk.
Wygląda to tak:
Zadanie O.3.b. Wyznacz obwód i pole rozety opisanej na trójkącie prostokątnym o obu przyprostokątnych 4.
Wsk.
Wygląda to tak:
Zadanie O.3.c. Wyznacz obwód i pole rozety opisanej na trójkącie prostokątnym o przyprostokątnych 6 i 8.
Wsk.
Wygląda to tak:
Zadanie O.n.o. Niech W będzie takim wielokątem, że można na nim opisać koło i środek tego koła leży w W. Wyznacz obwód tej rozety.
Wsk.
To nie jest trudne.
Zadanie O.n.p. Niech W będzie takim wielokątem, że można na nim opisać koło i środek tego koła leży w W. Uzasadnij, że
pole rozety opisanej na W jest średnią arytmetyczną
pola W i pola koła opisanego na W.
Wsk.
Patrz:
Zadanie O.n.p'. (dla znających trygonometrię)
Wyznacz obwód i pole rozety opisanej na trójkącie o bokach 1, 1,
.
Rozeta wpisana w wielokąt
Gdy w wielokąt można wpisać koło, to można też wpisać weń rozetę
utworzoną następująco:
- wyznaczamy środek O koła wpisanego w wielokąt
- wyznaczamy promienie tego koła łączące punkty styczności z O
- tworzymy koła o średnicach będących tymi promieniami
- wpisana rozeta jest sumą utworzonych kół.
Zadanie W.4. Wyznacz obwód i pole rozety wpisanej w kwadrat o boku 4.
Wsk.
Wygląda to tak:
Zadanie W.6. Wyznacz obwód i pole rozety wpisanej w sześciokąt foremny o boku 4.
Wsk. 1.
Wygląda to tak:
Wsk. 2.
Jaka jest miara zaznaczonego kąta?
Zadanie W.3. Wyznacz obwód i pole rozety wpisanej w trójkąt równoboczny o boku 4.
Wsk. 1.
Wygląda to tak:
Wsk. 2.
Jaka jest miara zaznaczonego kąta?
Zadanie W.3.b. Wyznacz obwód i pole rozety wpisanej w trójkąt prostokątny o przyprostokątnych 4.
Wsk.
Wygląda to tak:
Zadanie W.3.c. Wyznacz obwód i pole rozety wpisanej w trójkąt prostokątny o przyprostokątnych 6 i 8.
Wsk.
Wygląda to tak:
Zadanie W.o. Jaki jest obwód rozety wpisanej w wielokąt, w który można wpisać koło o promieniu r?
Wsk.
To nie jest trudne.
Zadanie W.n. (dla znających trygonometrię)
Wyznacz obwód i pole rozety wpisanej w n-kąt foremny o boku a.
Zadanie W.3.p'. (dla znających trygonometrię)
Niech r i R oznaczają promień koła wpisanego trójkąt i promień koła opisanego na trójkącie t. Uzasadnij, że
Pole rozety wpisanej w t jest równe r2/2 +
1/8 .r2/R. obwód t .
Zadanie W.3.p''. (dla znających trygonometrię)
Niech r i R oznaczają promień koła wpisanego w trójkąt i promień koła opisanego na trójkącie t. Uzasadnij, że
Pole rozety wpisanej w t jest równe r2/2 +
1/4 .r/R. pole t .
Miesięcznik "Delta" wydawany przez Wydział Matematyki Informatyki i Mechaniki Uniwersytetu Warszaw-skiego zdobył nagrodę główną w jubileuszowej XX edycji konkursu na Popularyzatora Nauki w kategorii "Media". Konkurs organizuje serwis PAP "Nauka w Polsce".
Tradycyjnie w grudniu rozgrywane są finały konkursu matematycznego KOMA. Eliminacje dotyczyły w tym roku numerycznych reprezentacji grafów. A co będzie tematem finałów?
Mikołaj na magicznych saniach zaprzężonych w renifery pokonuje 300 km w ciągu pół godziny. Ile czasu zajmie mu przebycie 1000 km, jeśli renifery utrzymają stałe tempo jazdy?